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ABSTRACT
Estimating causal treatment effect with observational data is a challenging task
since the underlying data-generating models for outcome and treatment assignment
are unknown. Many widely used causal inference methods show poor operational
characteristics from a statistical perspective. In this paper, we propose an ordinary
least-squares (OLS) based approach for estimating causal treatment effect without
parametric assumptions for either outcome or treatment assignment mechanism.
Our model-free estimator builds on the nonparametric spline-based sieve estimates
of two summary scores: the propensity score and the mean outcome score. We show
that this proposed method leads to a

√
n-consistent and asymptotically normally

distributed estimator of the causal treatment effect. Monte-Carlo simulation studies
are conducted to compare our proposed method with other widely used conventional
methods and demonstrate the superior performance of our model-free estimator. We
apply this approach to a case study of the biologic anti-rheumatic treatment effect
on children with newly onset juvenile idiopathic arthritis disease.

KEYWORDS
causal inference; empirical process theory; nonparametric estimation; potential
outcomes; regression splines

1. Introduction

Observational study is increasingly used for understanding causal questions in social
or biomedical science, for logistical and ethical considerations, and for its ability to
efficiently use existing resources and information technology. With the causal assump-
tions and the concept of a potential outcome framework (Rubin, 1974; Rosenbaum
and Rubin, 1983, 1985; Holland, 1986; Neyman et al., 1990), many different methods
have been developed for the purpose of estimating treatment effect based on observa-
tional data (Rosenbaum and Rubin, 1983; Rosenbaum, 1987; Lunceford and Davidian,
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2004; Imbens, 2004; Bang and Robins, 2005; Austin & Mamdani, 2006). Many of these
works focused mainly on obtaining an unbiased point estimator. The inferential and
operational characteristics of the estimated causal treatment effect were carefully in-
vestigated by Tsiatis (2006), Kang and Schafer (2007), and Gutman and Rubin (2017).
These works call for the need for a causal treatment effect estimator that is robust,
consistent, and offers well-performing statistical and operational characteristics.

The introduction of potential outcomes to causal inference brings the fundamental
challenge of estimating causal treatment effect: the observed outcomes comprise only
half of the potential outcomes, while the other half is missing. Consider a relatively
simple setting: a binary treatment A, where A = 1 and A = 0 indicate the treat-
ment condition and control condition, respectively. If both the potential outcomes
Y (0) and Y (1) are available, the causal treatment effect is simply the contrast of
Y (0) and Y (1). However, only one of the two is observed depending on the status
of A, i.e., Y = AY (1) + (1 − A)Y (0). Thus the observed outcome (Y ) is produced
jointly by two correlated data-generating models: the underlying science model for
the potential outcomes (Y (0), Y (1)) and the treatment selection model for pr(A = 1).
Many existing causal inference methods assume accurate knowledge of at least one of
the data-generating models. For example, outcome regression methods assume that
we possess knowledge about the true functional form of the science model. Propen-
sity score based methods, such as the inverse probability weighting method (IPW)
(Horvitz and Thompson, 1952; Rosenbaum and Rubin, 1983; Rosenbaum, 1987), work
only when the propensity scores can be consistently estimated from a correctly spec-
ified treatment selection model. As a combination of outcome regression method and
inverse probability weighting method, doubly robust methods, such as augmented in-
verse probability weighting (AIPW) (Robins et al., 1994; Scharfstein et al., 1999; Tsi-
atis, 2006), require correct model specification for at least one of the two (Lunceford
and Davidian, 2004; Bang and Robins, 2005). However, in real-world applications, it
is often unrealistic to assume accurate knowledge of either outcome-generating model
or the treatment assignment model. If both models are misspecified, the conventional
estimators of causal treatment effect can be badly biased (Carpenter et al., 2006; Kang
and Schafer, 2007; Vansteelandt et al., 2012). Therefore, in causal inference practice,
we frequently face the challenge of deriving a good estimator of causal treatment effect
that ensures consistency without the correct specification for at least one model.

In this paper, we propose a two-stage ordinary least-squares (OLS) based model-free
approach for estimating causal treatment effect and develop its asymptotic theory
for causal inference. The proposed method builds on two summary scores: the mean
score E(Y |X) and the propensity score pr(A = 1|X) = E(A|X). We adopt the widely
available nonparametric regression technique, regression spline estimation (Wegman
andWright, 1983), to obtain consistent estimates of the two summary scores at the first
stage. Then, at the second stage, we construct a least-squares based utility function
to conduct an M-estimation with the two plugged-in consistently estimated scores,
which simply yields an explicit estimate of the casual treatment effect. Without any
parametric model assumption in the whole estimation procedure, this method leads to
a model-free estimator of causal treatment effect that enjoys estimation consistency
and robustness without worrying about the functional forms for the underlying mean
and propensity scores. We use empirical process theory to show that this model-
free OLS estimator of causal treatment effect is

√
n-consistent and asymptotically

normal. Furthermore, the numerical instability issue due to inverse weights for extreme
estimated propensity scores in conventional inverse probability weighting methods is
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prevented in our proposed method because the estimated propensity scores are not
intended to be used for creating individualized weights.

The rest of the paper is organized as follows: In Section 2, we first give the notation
and background of causal treatment effect in the potential outcome framework and
then describe the proposed method and the estimation procedure in detail. In Section
3, we state an asymptotic theory related to the proposed methodology. In Section 4, we
use Monte-Carlo simulations to demonstrate the superior finite sample performance of
the proposed model-free estimator of causal treatment effect in comparison with the
conventional causal inference methods, IPW and AIPW. We illustrate the application
of this proposed method by estimating the biologic anti-rheumatic treatment effect
on children with newly onset juvenile idiopathic arthritis disease using data from an
observational study in Section 5. The technical details for deriving the asymptotic
theories are included in the appendix.

2. Method

2.1. Notation and Causal Assumptions

Consider an observational study with n subjects, in which we observed n independent
and identically distributed copies of data O = (A, Y,X). Y is a continuous outcome,
A is a dichotomous treatment variable taking values 1 (active treatment) or 0 (con-
trol), and X is a fixed vector of measured pre-treatment covariates including potential
confounders to the relationship between Y and A. We are interested in estimating the
causal effect of treatment A on the outcome Y .

Using the potential outcome framework for causal inference (Rubin, 1974), the estima-
tion of causal effects is a comparison of potential outcomes. Let (Yi(1), Yi(0)) denote
a pair of potential outcomes for subject i that indicate the hypothetical outcome of
subject i under treatment and control, respectively. Following Rubin’s stable unit-
treatment value assumption (Rubin, 1980; 1990), we assume the treatment levels are
identical across all the subjects and the potential outcomes for any subject do not de-
pend on the treatment or outcome of other subjects. We use the standard consistency
assumption (Rubin, 1986; Judea, 2010) to link the potential outcomes and observed
outcome for subject i as

Yi =

{
Yi(1) if Ai = 1
Yi(0) if Ai = 0,

which can be simply expressed as

Yi = Yi(1)Ai + Yi(0)(1−Ai).

We denote the causal treatment effect for subject i as τi = Yi(1)− Yi(0), the contrast
of two potential outcomes, and the covariate-specific average treatment effect (ATE)
for a subpopulation with covariate X being x as τ(x) = E(Yi(1)− Yi(0)|X = x). Then
the population ATE is simply τ = EX{τ(X)}, where EX(.) is the expectation taking
over the population with respect to X. In this paper, we are specifically interested in
the estimation of ATE τ in a homogeneous population in terms of treatment effect.
That is we assume that the treatment effect is homoscedastic, i.e, τi = τ + εi with εi
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satisfying (i) E(εi) = 0, (ii) εi is independent of Xi. In this simplified scenario, X only
plays the role of an effect mediator but not an effect modifier, and τ(x) is thus equal
to τ .

Another key assumption in the potential outcome framework is the identification of the
causal treatment effect. It is commonly referred to as the strongly ignorable treatment
assignment assumption (Rosenbaum & Rubin, 1983) and includes the following two
conditions:

(1) Ignorability: (Yi(1), Yi(0)) ⊥ A|X, where ⊥ denotes independence. This condi-
tion is also called no unmeasured confounder, which implies that X is sufficient
to be adjusted for in order to remove all the possible confounding between the
relationship of A and Y .

(2) Positivity: 0 < pr(A = 1 | X = x) < 1 for all x. pr(A = 1 | X = x) is formally
termed the propensity score. This condition indicates that the probability of
being treated or not treated for any subject with all possible values of X is
positive.

The well-known and common approaches for causal ATE in the literature are the
inverse propensity weighting (IPW) method and the augmented inverse propensity
weighting (AIPW) method, which was shown to have the double robustness property
(Lunceford and Davidian, 2004; Bang and Robins, 2005). Our proposed method re-
quires a weaker version of the ignorability assumption in the form of E(Yi(a)|Ai =
a,Xi) = E(Yi(a)|Xi), a = 1, 0, which is also called the mean independence assump-
tion (Imbens, 2004). For the scenario with a homoscedastic treatment effect, ATE τ
is identifiable by the observed outcome under the weak ignorability and consistency
assumptions, since

τ = E(Y (1)− Y (0)) = E(Y (1)− Y (0)|X) Homoscedastic treatment effect

= E(Y (1)|A = 1, X)− E(Y (0)|A = 0, X) Weak ignorable assumption

= E(Y |A = 1, X)− E(Y |A = 0, X) Consistency assumption

2.2. Motivation

The proposed method is built on two scores: mean score and propensity score, denoted
as m(X) = E(Y |X) and π(X) = pr(A = 1 | X), respectively. For the scenario
described in Section 2.1, we have

m(X) = E(Y |X) = E(Y |A = 1, X)pr(A = 1|X) + E(Y |A = 0, X)pr(A = 0|X)

= E(Y |A = 0, X) + π(x)τ. (1)

Since

E(Y |A = a,X) = E(Y |A = 1, X)a+ E(Y |A = 0, X)(1− a)

= E(Y |A = 0, X) + aτ, (2)

it follows that

E(Y |A = a,X) = m(X) + (a− π(X))τ, (3)
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by subtracting (1) from (2), which fits exactly the framework of the partially linear
semiparametric regression model studied by Robinson (1988). Equation (3) leads to a
simple OLS method to estimate the ATE τ by solving for

argmin
τ

n∑
i=1

{(Yi −m(Xi))− (Ai − π(Xi))τ}2. (4)

If both the mean and propensity scores are known, the OLS estimator of τ is easily
calculated by

τ̂ =

∑n
i=1 {(Yi −m(Xi))(Ai − π(Xi))}∑n

i=1(Ai − π(Xi))2
(5)

2.3. Two-Stage Estimation

The proposed OLS-based estimator of τ requires knowledge of the mean and propensity
scores, m(x) and π(x). We propose to estimate the causal treatment effect in a model-
free manner in the following two-stage estimation procedure.

Stage 1: Nonparametric estimation of m̂(x) and π̂(x).

Stage 2: We plug in (m̂(X), π̂(X)) to the OLS estimator (5) to obtain an explicit
model-free estimator of ATE τ by

τ̂mf =

∑n
i=1 {(Yi − m̂(Xi))(Ai − π̂(Xi))}∑n

i=1(Ai − π̂(Xi))2
.

Remark 1: τ̂mf is not a type of inverse probability weighting estimator because
the denominator is the total of the squares of estimated individual propensity score.
Hence, it does not suffer the numerical instability issue as frequently seen in IPW and
AIPW methods due to the true or estimated propensity score being close to 0 or 1 at
some covariate values X (Tsiatis, 2006; Austin and Stuart, 2015; Gutman and Rubin,
2017).

Remark 2: Hahn (1998) was the first to identify a connection between the suggested
method for ATE and Robinson’s partially linear regression method. However, he did
not realize that the connection is only valid for the situation that the treatment effect
is independent of covariates X and hence made a wrong statement about the semi-
parametric inefficiency of the proposed method. As a matter of fact, if the treatment
effect is non-homoscedastic, equation (3) becomes

E(Y |A = a,X) = m(X) + (a− π(X))τ(X),

where τ(X) = E(Y (1) − Y (0)|X). It is clear that the ATE τ = EX [τ(X)] does not
fit the framework of the partially linear regression model, and our proposed estimator
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τ̂mf converges in probability to

τ∗ =
E [(Y −m(X))(A− π(X))]

E [(A− π(X))2]

as indicated by Hahn (1998), which actually is not τ = E(Y (1) − Y (0)). Our simu-
lation study (not included in this paper) also confirmed this fact. Nevertheless, if the
homogeneous treatment effect assumption holds, var(τ(X)) ≡ 0 and the asymptotic
variance bound for τ given in Theorem 1 (Hahn, 1998) is the asymptotic variance of
the semiparametric OLS-estimator discussed in Hahn (1998, page 323).

3. Asymptotic Properties

In this section, we provide a general asymptotic normality theorem for the proposed
OLS-based estimator τ̂mf given that the nonparametric estimators (m̂(X), π̂(X)) pos-
sess some proper asymptotic properties. Let Pf = Ef(X) be the probability measure
on some measurable real function f on the sample space X and Pnf = n−1

∑n
i=1 f(Xi)

the corresponding empirical measure on a random sample from X . Denote ‖f‖L2(P ) ={∫
f2(x)dP (x)

}1/2
the L2-norm associated with the probability measure P .

Theorem 3.1. Suppose the observed data consist of a random sample D = {Oi =
(Ai, Yi, Xi) : for i = 1, 2, · · · , n} and potential outcomes satisfy the homogeneity,
weak ignorability, and consistency assumptions. Also, assume that the nonparametric
estimators (m̂(X), π̂(X)) from Stage 1 satisfy the following conditions:

C1.
√
n(Pn − P ) {(Y −m(X))(π̂(X)− π(X))} = oP (1)

C2.
√
n(Pn − P ) {(A− π(X))(m̂(X)−m(X))} = oP (1)

C3.
√
n(Pn − P ) {(m̂(X)−m(X))(π̂(X)− π(X))} = oP (1)

C4.
√
n(Pn − P ) {(A− π(X))(π̂(X)− π(X))} = oP (1)

C5.
√
n(Pn − P )(π̂(X)− π(X))2 = oP (1)

C6. ‖m̂−m‖L2(P ) = Op

(
n−1/4

)
and ‖π̂ − π‖L2(P ) = op

(
n−1/4

)

Then,

√
n(τ̂mf − τ) →d N(0, HΣH�),

where

H =

(
1

E[A− π(X)]2
,
−E[Y −m(X)][A− π(X)]

(E[A− π(X)]2)2

)

and

Σ = Cov

(
[Y −m(X)][A− π(X)]

[A− π(X)]2

)
.

6



A Simple Least-square Method for Estimating Homogeneous Causal Treatment Effect  61

Remark 3: According to Theorem 1, it appears that the conditions for the proposed
model-free estimator of ATE τ̂mf being asymptotic normal are not strong. As long as
the nonparametric estimators (m̂(X), π̂(X)) from Stage 1 fall into some P -Donsker
classes (van der Vaart and Wellner, 1996) and are weak consistent with a convergence
rate even much slower than root-n, the proposed estimator of ATE is

√
n-consistent

and asymptotically normal. These conditions can be easily accomplished by performing
the regression splines (Wegman and Wright, 1983) at Stage 1 for both the mean and
propensity scores, given that they are smooth functions.

4. Simulation Study

A simulation study was conducted to evaluate the performance of our proposed model-
free estimator of ATE and to compare it with estimators from other conventional
methods, including IPW and AIPW in various scenarios. This Monte Carlo simula-
tion mimicked a hypothetical retrospective cohort study with two observed baseline
covariates X = (X1, X2). X1 was a continuous covariate generated from N(0, 1) and
X2 was a binary group indicator generated from Bernoulli(0.5) and independent of
X1. For each subject in a random sample, the probability of being assigned to the
treatment group A = 1 is modeled by the following logistic model:

π(X) = pr(A = 1|X1, X2) =
exp(−0.8 + 0.5X1 + 0.2X2

1 + 0.4X2X1)

1 + exp(−0.8 + 0.5X1 + 0.2X2
1 + 0.4X2X1)

, (6)

and the treatment assignment A = 1 associated with X was generated from
Bernoulli(π(X)). This treatment-selection mechanism yielded a proportion of treated
subjects of approximately 45%. Given A and covariates (X1, X2), the outcome Y was
generated according to the following model:

Y = −2 + 0.5X1X2 + 0.6X2
1 + 2eX1 + 6A+ ε, (7)

where the random error ε is independent of X = (X1, X2) and is normally distributed
with N(0, 1). This results in the mean score given by

m(X) = −2 + 0.5X1X2 + 0.6X2
1 + 2eX1

+
6 exp(−0.8 + 0.5X1 + 0.2X2

1 + 0.4X2X1)

1 + exp(−0.8 + 0.5X1 + 0.2X2
1 + 0.4X2X1)

. (8)

Our interest lies in studying the average casual effect of a dichotomous treatment A
on the outcome Y , which is 6 in this setting.

We estimated the mean and propensity scores at the first stage using the cubic B-
splines regression method that was only applied to X1 since X2 is a binary variable.
For a study sample with n observations of X1 contained in a closed interval [a, b], we
divided this interval into qn − 3 subintervals made by a sequence of spline knots given
by

a = ξ1 = ξ2 = ξ3 = ξ4 < ξ5 < · · · < ξqn < ξqn+1 = ξqn+2 = ξqn+3 = ξqn+4 = b,

where the number of knots qn was chosen to be
[
n1/3

]
, the largest integer less than
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n1/3 and the qn − 4 interior knots were placed at the quantiles of X1. The mean and
propensity scores were estimated through the regression splines by modelling

m(X) =

qn∑
j=1

α
(1)
j Bj(X1) +

qn∑
j=1

α
(2)
j Bj(X1)X2

and

log

{
π(X)

1− π(X)

}
=

qn∑
j=1

β
(1)
j Bj(X1) +

qn∑
j=1

β
(2)
j Bj(X1)X2,

respectively, where Bj(X) is the normalized B-spline basis functions at the knots ξj
for j = 1, · · · , qn.

For the competing method IPW, we considered two scenarios: (i) one with the true
parametric propensity model (IPW-pT) given in (6); (ii) another with the wrongly
specified ordinary logistic regression model (IPW-pW) with covariates X1, X2, and
X1X2. We particularly use the stabilized weights:

wi =
1

n

[
Ain1

π̂(Xi)
+

(1−Ai)n0

1− π̂(Xi)

]
i = 1, 2, · · · , n

(Cole and Hernan,2008) to reduce potential influence of extreme weights resulting from
the inverse probability weighting, where n1 and n0 are sample sizes associated with
treatment and control, respectively. For the competing method, AIPW, we examine all
four possible scenarios: (i) both the mean and propensity score models were specified
correctly (AIPW-mT&pT) as given in (8) and (6), respectively; (ii) the mean score
model was specified correctly as given in (8) but the propensity score model was speci-
fied wrongly as for the IPW-pW estimator (AIPW-mT&pW); (iii) the propensity score
model was specified correctly as given in (6) but the mean score was wrongly speci-
fied as the ordinary linear regression model (AIPW-mW&pT) with covariates X1, X2,
and X1X2; (iv) both the mean and propensity score models were wrongly specified
as aforementioned (AIPW-mW&pW). In addition, we also included a hypothetical
scenario for which we knew exactly the outcome model (7), and we implemented the
maximum likelihood estimation method (MLE) to achieve an efficient estimation of
ATE of 6. The result of this hypothetical analysis was used as a benchmark to evaluate
the competing methods described above.

Table 1 presents the simulation results for sample sizes 200, 400, and 800 that summa-
rize the estimation bias (Bias), Monte-Carlo standard deviation (M-C SD) based on
1000 repetitions, average standard error (ASE) based on 100 bootstrap samples with
replacement, and coverage probability (CP) of the 95% Wald-confidence interval (CI).
Figure 1 depicts the distributions of the competing ATE estimators with 1000 repeated
samples of size n = 400. This simulation study clearly revealed that the IPW method
with the correctly specified propensity model had very little estimation (less than 0.5%
for sample size 800) but was very unstable in estimating the ATE with a larger amount
of variability compared to other methods. However, when the propensity model was
misspecified, the IPW method led to a very large estimation bias. As anticipated, the
AIPW method performed much better than the IPW method. When both the mean
and propensity score models were correctly specified, the estimation bias was virtually
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Table 1. Comparison of the proposed method to IPW and AIPW methods for estimating ATE in a Monte-

Carlo simulation study with 1000 repetitions. M-C SD: Monte-Carlo standard deviation; ASE: Average esti-

mated standard error; 95% CP: Empirical coverage probability of estimated 95% Wald-confidence interval.

|Bias| M − CSD ASE 95%CP
n 200 400 800 200 400 800 200 400 800 200 400 800

Proposed method:
MF 0.007 0.001 <0.001 0.156 0.110 0.078 0.158 0.109 0.076 0.946 0.945 0.933
MLE method:
MLE 0.007 <0.001 <0.001 0.150 0.108 0.077 0.151 0.106 0.075 0.951 0.944 0.937
IPW methods:
IPW-pT 0.009 0.015 0.004 0.979 0.642 0.446 0.999 0.674 0.467 0.948 0.956 0.952
IPW-pW 3.532 3.538 3.494 1.148 0.745 0.534 1.184 0.760 0.530 0.129 0.002 0.000
AIPW methods:
AIPW-pT&mT 0.007 0.001 <0.001 0.153 0.109 0.077 0.154 0.107 0.076 0.951 0.943 0.937
AIPW-pT&mW 0.018 0.021 0.010 0.465 0.312 0.214 0.508 0.322 0.217 0.959 0.951 0.965
AIPW-pW&mT 0.007 0.001 <0.001 0.153 0.109 0.077 0.154 0.107 0.076 0.945 0.941 0.932
AIPW-pW&mW 3.402 3.450 3.426 1.079 0.718 0.519 1.041 0.717 0.510 0.103 0.002 0.000

negligible even when the sample size was only 200; the average standard error was
close to the Monte-Carlo standard deviation; and the coverage probability of the 95%
CI was around the nominal value of 0.95. The double robustness property of the AIPW
was also demonstrated in the settings of AIPW-mT&pW and AIPW-mW&pT for this
simulation study, as the estimation bias was very close to zero. It is interesting to note
that when the mean score model was correctly specified, the estimation results for the
two AIPW scenarios were almost identical, regardless of whether or not the propensity
score was correctly specified. However, when both scores were wrongly specified, the
estimation was totally off the mark, resulting in a very large estimation bias. Com-
pared to both IPW and AIPW methods, our proposed model-free estimator of ATE
performed much better than the IPW method and almost as well as the AIPW method
with the mean score model correctly specified. It was numerically stable, with virtually
negligible estimation bias. The Monte-Carlo standard deviation was very small, only
slightly bigger than that based on the MLE method, for which the outcome model
was completely known to allow maximum likelihood estimation. This indicates that
our proposed method only resulted in a minor loss of estimation efficiency. Moreover,
the average standard error estimate was very close to the M-C SD even with a sample
size of 200, and the coverage probability of 95% CI was also close to the nominal
value of 0.95. Therefore, the asymptotic normality theory derived for this proposed
estimator in Section 3 is well justified by this numerical experiment, which allows the
standard statistical inference procedure to be applied for making causal inferences on
the average treatment effect in a finite sample.

5. A Case Study

As one of the most common chronic rheumatic diseases in children, Juvenile Idiopathic
Arthritis (JIA) refers to all forms of arthritis that begin before the age of 16 and per-
sist for more than 6 weeks with unknown origin. It is an important cause of short-term
and long-term disability and can significantly impact quality of life and mobility for
children with this chronic condition. There are many treatment options available for
JIA. Results from a randomized controlled trial suggest that early aggressive use of a
biological disease-modifying anti-rheumatic drug (DMARD) could be efficacious (Wal-
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Figure 1. Comparison of the distribution of estimated ATEs in different methods.

lace et al., 2012). But how effective is the early aggressive use of biological DMARDs
comparing to step-up consensus treatment plan (starting on a non-biologic DMARD
followed by switching to or adding biologic DMARDs) in treating children with newly
onset JIA remains an open question. In this case study, we focused on evaluating
the effectiveness of early aggressive use of biologic DMARD compared to the step-up
plan.

The case study data for this study are available from the authors upon reasonable
request. The dataset was derived from a single institute’s electronic health records
(EHR) between 2009 and 2017. A total of 509 children with a newly diagnosed pol-
yarticular form of JIA (<6 months since diagnosis) met the inclusion criteria, of which
283 patients initiated a step-up treatment plan and 124 received a combination of non-
biologic and biologic DMARD. The baseline is defined as the time when the patients
initialize their first DMARD. As the primary outcome of interest, cJADAs, a clinical
version of the Juvenile Arthritis Disease Activity score (Consolaro et al., 2014), is a
summary score derived from three core measures: the physician’s global rating of over-
all disease activity, parent/child ratings of well-being, and counts of active joints. The
score ranges from 0 to 30, with a higher score indicating higher disease severity. At 6
months following the initial treatment, defined by the clinical visit falling within the 4
to 9 month window, 327 patients (225 on the step-up plan and 102 on the combination
plan) had non-missing cJADAs outcomes, and they were used in this case study. Pa-
tients from the two groups are similar in terms of demographic characteristics such as
age, gender, race, etc. But the two groups differ in some important clinically relevant
variables, such as baseline cJADAs, pain, etc. Patients with severe baseline disease
(high cJADSAs) were more likely to be assigned to the early biologic DMARD group.
Figure 2 depicts the beneficial effect of early aggressive biological DMARD usage on
lowering the cJADAs in this study population: the change of cJADAs from baseline
to 6 month visit is -8.4 and -6 for the early combination group and step-up group,
respectively.

10
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Figure 2. cJADAs at baseline and 6-month follow-up by treatment group.
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Table 2. Comparison of the estimated ATEs for the early aggressive use of biologic DMARD.

Method Estimate Stand. Error 90%-CI
PLR -1.362 0.762 (-2.617, -0.109)
IPW -1.121 0.871 (-2.554, 0.312)
AIPW -1.090 1.105 (-2.908, 0.728)
MF -1.396 0.760 (-2.647, -0.145)

To evaluate the ATE of biologic DMARD, we considered two baseline covariates:
cJADAs and pain. Pain is the most common symptom of JIA and has been suggested
to be linked with disease activity. It is a score ranging from 0 to 10, with 10 indicating
the highest severity of pain. The pain score was dichotomized using cutoff 3, which
makes about 42% patients fall in the low-pain group with a pain score<3 in this
study. Therefore, the baseline cJADAs and binary indicator of low pain take the roles
of X1 and X2, respectively, as described in the simulation study in Section 4. We used
the same estimation procedure as described in the simulation study to estimate both
mean and propensity scores, applying cubic B-spline only to baseline cJADAs but
including its interaction with low pain in the models. The knot number was chosen to
be qn = 7 with the 3 interior knots placed at the first, second, and third quartiles of
the observed cJADAs values. For the purpose of comparing the estimated treatment
effect with other traditional methods, we also implemented (i) partial linear regression
(PLR) assuming outcome model is Y = f(X1, X2) + αA + ε where f(X1, X2) was
modeled by

f(X1, X2) =

qn∑
j=1

η
(1)
j Bj(X1) +

qn∑
j=1

η
(2)
j Bj(X1)X2,

by adopting exactly the same sieve estimation approach as used in the mean score
estimation in our proposed method; (ii) IPW with the propensity score estimated by
the same spline-based sieve maximum likelihood method as described in the proposed
method; (iii) AIPW with the mean and propensity scores estimated by the same
regression spline methods as described in the proposed method.

We present the analysis results of the estimated ATE, bootstrapping standard error
estimator with 200 samples, and 90% Wald-CI in Table 2. Under the assumption of the
homogeneous treatment effect, our proposed model-free method estimated the ATE at
-1.396 with 90% CI of (-2.647, -0.145), in contrast to the partial linear regression esti-
mator -1.362 (-2.617,-0.109), IPW -1.121 (-2.554, 0.312), AIPW -1.09 (-2.908, 0.728).
The results implied the beneficial effect of early aggressive use of biologic DMARD us-
ing the proposed method, as it suggests that early aggressive use of biologic DMARD
leads to about a significant 1.4 point reduction in cJADAs 6 months later at 0.1 level
in treating children with newly diagnosed pcJIA. The partial linear regression method
yielded a similar conclusion. However, both IPW and AIPW resulted in smaller es-
timated ATEs with larger standard errors, which led to an insignificant effect at 0.1
level.

12
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6. Final Remarks

In this paper, we propose a nonparametric model-free estimation method for causal
treatment effect in the spirit of the ordinary least-squares method, which does not
need to specify any parametric functional forms for estimating both the mean and
propensity scores and hence can be regarded as a robust estimation method. The most
appealing feature of the proposed method is that, unlike the IPW and AIPW meth-
ods, it does not need to inversely weight the individual propensity scores and hence
removes the disastrous impact caused by the estimated propensity scores that are near
0 or 1 associated with extreme observations. This methodological advantage results in
numerical stability in estimating the casual treatment effect in comparison to the IPW
and AIPW methods. Using empirical process theory, we showed that the proposed esti-
mator is

√
n-consistent with a limiting normal distribution. We demonstrated through

the simulation studies that ordinary asymptotic normality theory based inference is
valid in our proposed approach for a moderate sample size. In addition to its numeri-
cal merit, the proposed method has superior finite-sample statistical properties when
compared to the IPW/AIPW methods. In addition, this model-free estimation method
is nearly as efficient as the MLE method when the complete stochastic mechanism for
outcomes is known, which is, of course, not practically realistic. All these nice features
make the proposed method a practically sound approach to making causal inferences
for the treatment effect in an observational study.

Though we only considered the scenario of binary treatment for the sake of simplicity in
presentation and for because it is the most common situation in biomedical studies, the
proposed methodology can be readily extended to a scenario with multiple treatment
levels. Suppose we have K treatment levels (ai for i = 1, · · · ,K) in a study, with
A indicating the treatment that a subject received. Let Y (ai) denote the potential
outcome associated with treatment level ai for i = 1, · · · ,K. Let aK chosen as the
reference treatment level for comparison, and τi = E(Y (ai) − Y (aK)) denote the
causal treatment effect for treatment level ai in comparison to the reference level aK
for i = 1, · · · ,K − 1. Let πi(X) = pr(A = ai|X) denote the multivariate propensity
scores for i = 1, · · · ,K−1. In the scenario of homogeneous causal treatment effects, the
equation of the expected observed outcome given treatment indicator A and covariate
X in a simple treatment-control case (3) can be similarly derived as

E(Y |A,X) = m(X) +

K−1∑
i=1

(1[A = ai]− πi(X)) τi. (9)

Then the two-stage model-free estimator of τ = (τ1, · · · , τK−1) can be explicitly ob-
tained by solving for the least-squares problem

argmin
τ

n∑
i=1


(Yi −m(Xi))−

K−1∑
j=1

(1[Ai = aj ]− πj(Xi))τj




2

,

after obtaining the nonparametric estimates form(X) and πi(X) for i = 1, · · · ,K−1 in
the first stage. The asymptotic theory can be similarly developed with more algebraic
complexity.

In the literature on the casual treatment effect, ATE was defined as the population
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average of the contrast between the potential outcomes. In this paper, we focused on
the estimation of ATE for the situation that X contains only confounders for the treat-
ment effect, not effect modifiers, because ATE is not very meaningfully interpretable
in practice when X modifies the treatment effect. For example, if a treatment for men
has a positive effect of 5 and a negative effect of -5 for women, it would be better
to interpret gender-specific treatment effects rather than report no treatment effect
for the general population. This said, it would be more useful to study covariate-
specific ATE defined by τ(X) = E(Y (1) − Y (0)|X) if one believes X modifies the
treatment effect. The two-stage methodology can also be extended to study covariate-
specific ATEs if one wishes to model τ(X) using a specific functional form such as
linear regression or implement nonparametric spline-based sieve estimation for τ(X).
The theoretical development of the parametric model can be similarly done with the
techniques adopted in this manuscript. But it would be much more involved for the
nonparametric spline-based sieve estimation and is currently under investigation by
the authors.

While the proposed two-stage OLS-based estimator enjoys its numerical simplicity and
stability, its validity relies on the consistency of the nonparametric estimators of the
mean and propensity scores. In this paper, we considered nonparametric spline-based
sieve estimators, as their asymptotic properties required for the proposed estimated
ATE to have asymptotic normality are easily justified when X is a low-dimensional
covariate vector. Our asymptotic theorem, however, is general for any nonparametric
estimator as long as the conditions stipulated for the theorem are satisfied. Those
conditions are generally weak for nonparametric estimators when X is low dimen-
sional.

For a case with high-dimensional covariates, the spline-based sieve estimation is not
only numerically inconvenient, but also possibly loses the desired statistical properties.
But it is not just a problem for spline-based sieve estimation; it is a universal problem
for any nonparametric estimation method. In a practice with high-dimensional con-
founders X, we recommend using some modern machine learning methods (McCaffrey
et al., 2004; Lee et al., 2010) to estimate the mean and propensity scores in the first
stage before applying this proposed method.
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Appendix

Proof of Theorem 1

We write the proposed estimated ATE as follows:

τ̂mf = An(π̂)Bn(π̂, m̂),

where

An(π̂) =
1

Pn[A− π̂(X)]2
and Bn(π̂, m̂) = Pn[Y − m̂(X)][A− π̂(X)].

By taking the expectation over (A,X) on (3), the population ATE can also be written
as

τ = A0(π)B0(π,m)

with

A0(π) =
1

P [A− π(X)]2
and B0(π,m) = P [Y −m(X)][A− π(X)].

Straightforward algebra leads to

√
n(τ̂mf − τ) = Bn(π̂, m̂)

√
n[An(π̂)−A0(π)] +A0(π)

√
n[Bn(π̂, m̂)−B0(π,m)]. (10)

First, after some algebra, it can be shown that

√
n[Bn(π̂, m̂)−B0(π,m)] = E(1)

n + E(2)
n + E(3)

n + E(4)
n + E(5)

n + E(6)
n + E(7)

n ,

where

E(1)
n =

√
n(Pn−P )[Y−m(X)][A−π(X)], E(2)

n = −
√
n(Pn−P )[Y−m(X)][π̂(X)−π(X)],

E(3)
n = −

√
nP [Y−m(X)][π̂(X)−π(X)], E(4)

n = −
√
n(Pn−P )[A−π(X)][m̂(X)−m(X)],

E(5)
n = −

√
nP [A−π(X)][m̂(X)−m(X)], E(6)

n =
√
n(Pn−P )[m̂(X)−m(X)][π̂(X)−π(X)],

and

E(7)
n =

√
nP [m̂(X)−m(X)][π̂(X)− π(X)].

Then we immediately obtain that E
(2)
n , E

(4)
n , and E

(6)
n are all oP (1) according to Con-

ditions C1-C3, respectively, and E
(7)
n = oP (1) by C6 and Cauchy-Schwarz inequality.
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By taking the conditional expectation of Y and A given X first, respectively, in eval-

uating E
(3)
n and E

(5)
n , it immediately follows that E

(3)
n ≡ 0 and E

(5)
n ≡ 0. Hence, we

have

√
n[Bn(π̂, m̂)−B0(π,m)] =

√
n(Pn − P )[Y −m(X)][A− π(X)] + oP (1) →d N(0, σ2)

with σ2 = var {(Y −m(X))(A− π(X))} by the ordinary central limit theorem, and
it follows that Bn(π̂, m̂) →p B0(π,m).

Second, it can be shown easily that

√
n
[
Pn(A− π̂(X))2 − P (A− π(X))2

]
=

√
n(Pn−P )(A−π(X))2+F (1)

n +F (2)
n +F (3)

n +F (4)
n ,

where

F (1)
n = −2

√
n(Pn − P ) [(A− π(X))(π̂(X)− π(X))] ,

F (2)
n = −2

√
nP [(A− π(X))(π̂(X)− π(X))] ,

F (3)
n =

√
n(Pn − P )(π̂(X)− π(X))2, and F (4)

n =
√
nP (π̂(X)− π(X))2.

Then, using the same arguments as above, we can show that F
(1)
n and F

(3)
n are oP (1)

by C4 and C5, respectively; F
(2)
n ≡ 0 and F

(4)
n = oP (1) by the rate of convergence of

π̂(X) given in C6. Hence,

√
n
[
Pn(A− π̂(X))2 − P (A− π(X))2

]
=

√
n(Pn−P )(A−π(X))2+oP (1) →d N(0, σ̃2)

with σ̃2 = var{[A − π(X)]2}, and it follows that Pn(A − π̂(X))2 →p P (A −
π(X))2.

By the ordinary multivariate central limit theorem, it is easily seen

√
n

(
(Pn − P )[Y −m(X)][A− π(X)]

(Pn − P )[A− π(X)]2

)
→d N(0,Σ),

where

Σ = Cov

(
[Y −m(X)][A− π(X)]

[A− π(X)]2

)

is the variance-covariance matrix of the vector of the two entries, and hence,

( √
n [Bn (π̂, m̂)−B0(π,m)]√

n{Pn[A− π̂(X)]2 − P [A− π(X)]2}

)
→d N(0,Σ). (11)

18



A Simple Least-square Method for Estimating Homogeneous Causal Treatment Effect  73

Finally, by noting that

√
n[An(π̂)−A0(π)] =

1

Pn[A− π̂(X)]2P [A− π(X)]2
[−

√
n{Pn[A− π̂(X)]2 − P [A− π(X)]2}]

and

(
A0(π),

−Bn (π̂, m̂)

Pn[A− π̂(X)]2P [A− π(X)]2

)
→p

(
A0(π),

−B0(π,m)

(P [A− π(X)]2)2

)
(12)

based on the arguments above, it immediately follows that

√
n(τ̂mf − τ) =Bn(π̂, m̂)

√
n[An(π̂)−A0(τ)] +A0(π)

√
n[Bn(π̂, m̂)−B0(π,m)]

→d N(0, HΣH�)

with

H =

(
A0(τ),

−B0(π,m)

(P [A− π(X)]2)2

)

by (11) and (12), along with Slutsky’s Theorem and the fact that a linear transforma-
tion of a multivariate normal is still a normal. This completes the proof of Theorem
1. �

In what follows, we demonstrate that, under some weak assumptions, the B-spline-
based sieve nonparametric estimators for the mean and propensity scores satisfy the
conditions required by Theorem 1 for the situation considered in both our simulation
and case studies.

Initially, we consider the more general case of additive mean and propensity score
models of the form

m(X) = θ0(X) =

k∑
j=1

θ0,j(Xj)

and

g[π(X)] = φ0(X) =

k∑
j=1

φ0,j(Xj)

where X ∈ Rk, and θ0,j and φ0,j are sufficiently smooth functions of the jth component
of X, and g is a known link function. The B-spline sieve spaces for the unspecified
functions θ0,j , j = 1, . . . , k, have the form

Θj,n =

{
θj(x) =

qj,n∑
l=1

αj,lBl(x) : αj,l ∈ R, l = 1, . . . , qj,n

}
, j = 1, . . . , k
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where Bl(x) is the prespecified B-spline basis function and αj,l the spline coefficient
for l = 1, . . . , qj,n and qj,n = Nj,n +mj , with Nj,n being the number of interior knots
that depends on the total sample size n and mj is the order of the B-spline. Similarly,
the B-spline sieve spaces for the unspecified functions φ0,j , j = 1, . . . , k, have the
form

Φj,n =

{
φj(x) =

pj,n∑
l=1

γj,lBl(x) : γj,l ∈ R, l = 1, . . . , pj,n

}
.

The asymptotic properties of the proposed estimator are studied under the following
set of regularity conditions:

D1. The erros e have a zero mean and E|e|l < ∞ for l ≥ 3.

D2. The covariates X are bounded in the sense that P (‖X‖ ≤ C) = 1 for some
C ∈ (0,∞). Also, e and X are independent. Moreover, E(XXT ) is non-singular.

D3. The infinite-dimensional parameters have the form θ0 =
∑k

j=1 θ0,j and φ0 =∑k
j=1 φ0,j with θ0,j ∈ Θj and φ0,j ∈ Φj for j = 1, · · · , k. Moreover, the corre-

sponding parameter spaces Θ1, . . . ,Θk,Φ1, . . . ,Φk contain uniformly bounded
functions, with bounded pθj th and pφj

th derivative, j = 1, . . . , k, for fixed
pθj , pφj

≥ 1, and with the first derivatives being continuous.

D4. The inverse of the link function for the propensity score model is continuously
differentiable on compacts.

Before checking the conditions of Theorem 1 we provide a proof for a useful lemma,
which will be used later.

Lemma 6.1.
√
n(Pn − P )[Y −m(X)] [π̂(X)− π(X)] = oP (1).

Proof. Corollary 19.35 in van der Vaart (1998) is used for the proof, and the condi-
tions for this corollary are first discussed in what follows.

For j = 1, · · · , k, let

Fj =
{
φj ∈ Φj,n : ‖φj − φ0,j‖L2(P ) ≤ cn−pφj

/(2pφj
+1)

}
.

We define the function

f̃φ(x, y) = {y −m(x)}(πφ(x)− πφ0
(x)) = {y −m(x)}[g−1(φ(x))− g−1(φ0(x))],

where φ = {φj}kj=1 and φ0 = {φ0,j}kj=1. And we let

F =
{
f̃φ : φj ∈ Fj , j = 1, · · · , k

}
.

By the fact that both φ0,j and the spline function φj have a uniformly bounded deriva-
tive and X is continuous within a compact set and has a bounded density function, it
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can be shown that for φj ∈ Fj

‖φj − φ0,j‖∞ ≤ cn−2pφj
/(6pφj

+3).

Hence,

‖π̂ − π‖∞ ≤ cn−2pφ/(6pφ+3),

with pφ = min{pφj
: j = 1, · · · , k}. It follows that

|f̃φ(x, y)| ≤ cn−2pφ/(6pφ+3)|y −m(x)|.

So cn−2pφ/(6pφ+3)|y −m(x)| is the envelop function for F with

∥∥∥cn−2pφ/(6pφ+3)|Y −m0|
∥∥∥
L2(P )

≤ cn−2pφ/(6pφ+3),

since P{Y −m(X)}2 is bounded by the regularity conditions.

On the other hand, we know

N[ ](ε,Fj , ‖ · ‖∞) ≤

{
cn−pφj

/(2pφj
+1)

ε

}cn
1/(2pφj

+1)

.

Then, with some algebra, we can show that

N[ ](ε,F , ‖ · ‖L2(P )) ≤
{
cn−pφ/(2pφ+1)

ε

}cn1/(2pφ+1)

.

Now, by Corollary 19.35 in van der Vaart (1998), we have

EP ‖Gn‖F ≤ cJ[ ]

{
cn−2pφ/(6pφ+3),F , L2(P )

}

=

∫ cn−2pφ/(6pφ+3)

0

√
1 + logN[ ] {ε,F , L2(P )}dε

≤
∫ cn−2pφ/(6pφ+3)

0
cn1/(4pφ+2)n−pφ/(4pφ+2)ε−1/2dε = cn

3−5pφ

12pφ+6 . (13)

It is known that for a regression spline estimator,

{
P (φ̂j − φ0,j)

2
}1/2

= OP

(
n−pφj

/(2pφj
+1)

)
,

for j = 1, · · · , k. Then, by virtue of the fact that k is finite, for any small ε0 > 0 and
any positive integer n, we can find a M > 0 such that

Pr

[{
P (φ̂j − φ0,j)

2
}1/2

≤ Mn−pφ/(2pφ+1), j = 1, · · · , k
]
> 1− ε0. (14)
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If
{
P (φ̂j − φ0,j)

2
}1/2

≤ Mn−pφ/(2pφ+1) for j = 1, · · · , k, then f̃φ̂ ∈ F with φ̂ =

{φ̂j}kj=1. So we know that as n → ∞

EP

[∣∣∣Gn

(
f̃φ̂

)∣∣∣ :
{
P (φ̂j − φ0,j)

2
}1/2

≤ Mn−pφ/(2pφ+1), j = 1, · · · , k
]
≤ EP ‖Gn‖F

≤ cMn
3−5pφ

12pφ+6 → 0,

where the last inequality is by (13). Then conditional Markov’s inequality implies that,
for any small ε1 and ε2, there exists an integer N > 0 such that for n > N we have

Pr

[∣∣∣∣∣(Pn − P )

(
f̃φ̂

n−1/2

)∣∣∣∣∣ < ε1 :
{
P (φ̂j − φ0,j)

2
}1/2

≤ Mn−pφ/(2pφ+1), j = 1, · · · , k

]

> 1− ε2.

Now by (14) and the definition of conditional probability we have for n > N

Pr

[∣∣∣∣∣(Pn − P )

(
f̃φ̂

n−1/2

)∣∣∣∣∣ < ε1

]
> (1− ε2)(1− ε0),

which implies

√
n(Pn − P )

(
f̃φ̂

)
= oP (1),

or

√
n(Pn − P )[Y −m(X)]

[
πφ̂(X)− πφ0

(X)
]
= oP (1),

where πφ̂(X) ≡ π̂(X) and πφ0
(X) ≡ π(X).

First, by Lemma 1, we know that condition C1 of Theorem 1 is satisfied. Also, using
very similar arguments to those used in the proof of Lemma 1, it can be shown that
conditions C2–C5 of Theorem 1 are also satisfied. By the convergence rate calculation
in the proof of Lemma 1, it follows that, even under the minimal degree of smoothness
allowed by condition D3, we have that ‖m̂−m‖L2(P ) = Op

(
n−1/3

)
and ‖π̂−π‖L2(P ) =

Op

(
n−1/3

)
. Therefore, condition C6 of Theorem 1 is also satisfied. Thus, the model-

free ATE estimator is
√
n-consistent and asymptotically normal, with the variance

given by Theorem 1.

Finally, consider the propensity score and mean models used in the simulation and
case studies. These models have the form:

m(X) = θ0(X) = θ0,1(X1) + θ0,2(X1)X2

and

logit[π(X)] = φ0,1(X1) + φ0,2(X1)X2
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where X2 is a Bernoulli random variable. For the above parameters, we considered
B-spline sieve spaces

Θj,n =

{
θj(x) =

qj,n∑
l=1

αj,lBl(x) : αj,l ∈ R, l = 1, . . . , qj,n

}
, j = 1, 2,

and

Φj,n =

{
φj(x) =

pj,n∑
l=1

γj,lBl(x) : γj,l ∈ R, l = 1, . . . , pj,n

}
j = 1, 2.

Using very similar arguments as those used for the case of additive models above,
it can be shown that conditions C1–C6 of Theorem 1 are satisfied. Therefore, the
corresponding model-free ATE estimator is

√
n-consistent and asymptotically normal,

with the variance given by Theorem 1.
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